Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *SHELXL*93.

MTP thanks the SERC (UK) for funds and SB thanks the Department of Education of the Republic of Ireland for support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1040). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Do, Y., Kang, H. C., Knobler, C. B. & Hawthorne, M. F. (1987). Inorg. Chem. 26, 2348–2350.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- McGrath, M., Spalding, T. R., Fontaine, X. L. R., Kennedy, J. D. & Thornton-Pett, M. (1991). J. Chem. Soc. Dalton Trans. pp. 3223– 3233.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1995). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Thornton-Pett, M., Kennedy, J. D., Faridoon & Spalding, T. R. (1995). Acta Cryst. C51, 840–843.
- Vrabel, V., Garaz, J. & Kutschabsky, L. (1979). Acta Cryst. B35, 357-360.

Acta Cryst. (1995). C51, 1498-1500

3-(*tert*-Butyl isocyanide)-3,8-bis(dimethylphenylphosphine)octahydro-1,2-diarsa-3pallada-*closo*-dodecaboron(1+) Hexafluoroantimonate

GEORGE FERGUSON AND YIWEI LI

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1

TREVOR R. SPALDING AND JENNIFER C. PATTERSON

Department of Chemistry, University College, Cork, Ireland

(Received 12 December 1994; accepted 13 February 1995)

Abstract

The title compound, $[Pd(C_5H_9N)(C_8H_{11}P)\{B_9H_8A_{52}-(C_8H_{11}P)\}][SbF_6]$, contains a twelve-vertex $(PdA_{52}B_9)$

cage with the metal η^5 -bonded to an As₂B₃ ring. The *exo*-cage ligands dimethylphenylphosphine and *tert*butyl isocyanide are attached to Pd and a second PMe₂Ph ligand is attached to a cage B atom at position 8. The Pd—As interactions are notably asymmetric at 2.6434 (8) and 2.5296 (7) Å. Other principal dimensions are Pd—B 2.291 (6)–2.301, Pd—P 2.330 (2), Pd—C 2.011 (6) and As—As 2.492 (1) Å.

Comment

As part of our study of cationic metallaheteroborane clusters (Sheehan, Spalding, Ferguson, Gallagher, Kaitner & Kennedy, 1993; Ferguson, Gallagher, Sheehan, Spalding, Kennedy & Maciás, 1993), we have synthesized the title compound, (1), and determined its structure. This is the first cationic metallaarsenaborane to have been structurally characterized by X-ray diffraction techniques.

A view of the closo-[3-('BuNC)-3,8-(PMe₂Ph)₂-3,1,2-PdAs₂B₉H₈]⁺ cation in (1) is shown in Fig. 1, with our numbering scheme. Fractional atomic coordinates are given in Table 1 and principal dimensions are listed in Table 2. The exo-cage Pd3-P1 distance of 2.330(2) Å is typical of such bonds. Previously reported Pd-P distances in palladaheteroborane cages are 2.311 (3) and 2.327 (3) Å in closo-[3,3-(PMe₂Ph)₂-3,2,1-PdAs₂B₉H₉], (2) (Jasper, Roach, Stipp, Huffman & Todd, 1993), 2.344 (3) Å in closo-[3-Cl-3,8- $(PPh_3)_2$ -3,1,2-PdAs₂B₉H₈], (3) (McGrath, Spalding, Fontaine, Kennedy & Thornton-Pett, 1991), 2.3640(13) and 2.3285 (13) Å in the cation closo-[2,2-(PMe₃)₂- $2,1-PdTeB_{10}H_9(PPh_3)$]⁺ (Ferguson, Gallagher, Sheehan, Spalding, Kennedy & Maciás, 1993) and 2.3301 (7) and 2.3354 (8) Å in the neutral species closo-[2,2-(PMe₂Ph)₂-2,1-PdTeB₁₀H₁₀] (Ferguson, Gallagher, Mc-Grath, Sheehan, Spalding & Kennedy, 1993).

The isocyanide Pd3—C3 distance of 2.011 (6) Å is similar to the equivalent distance of 1.992 (11) Å in the B-bonded carbene complex *closo*-[2-I-2-('BuNC)-6-('BuNHCH)-2,1-PdTeB₁₀H₉], (4) (Sheehan, 1992). In *closo*-[1,1-('BuNC)₂-2-(NMe₃)-1,2-PdCB₁₀H₁₀] (5) (Carroll, Green, Stone & Welch, 1975) the Pd—C distances

Fig. 1. A view of the cation in (1) with the numbering scheme indicated. The non-H atoms are shown as displacement ellipsoids drawn at the 30% probability level. For clarity, H atoms are drawn as small spheres of arbitrary radii and the minor component of the disordered *tert*-butyl group is not shown.

were found to be 2.022 (7) and 2.027 (6) Å. The Pd— C—N geometries in (1), (4) and (5) are close to being linear with angles of 177.6 (6) in (1), 178.9 (9) in (4), and 173.6 (6) and 175.7 (6)° in (5).

The Pd—As interactions in (1) are remarkably asymmetric [Pd3—As1 2.6434 (8) and Pd3—As2 2.5296 (7) Å]. This situation was also observed in the (PMe₂Ph)₂Pd complex (2) (Jasper, Roach, Stipp, Huffman & Todd, 1993), with Pd—As distances of 2.6835 (18) and 2.5304 (13) Å, but not in (3) (Mc-Grath, Spalding, Fontaine, Kennedy & Thornton-Pett, 1991), which has a much more symmetrically bonded PdAs₂ unit with distances of 2.563 (4) and 2.539 (4) Å. The As—As distance in (1) is 2.492 (1) Å, similar to 2.4885 (15) Å in (2) and 2.477 (3) Å in (3).

The Pd—B distances in (1) [mean 2.974 (4) Å] are notably similar to the related distances in (2) [mean 2.297 (11) Å] and in (3) [mean 2.28 (5) Å]. The range of As—B distances in (1) is 2.105 (7)–2.230 (7) Å. A similar range was reported for (2) [2.119 (12)– 2.259 (12) Å], but that in (3) is slightly larger [2.101 (9)– 2.281 (8) Å]. The B—B distances in (1) range from 1.732 (9) Å for B9—B12 to 1.879 (8) Å for B4—B5. The ranges in (2) and (3) are very similar [1.740 (16)– 1.881 (17) Å in (2), 1.739 (12)–1.896 (10) Å in (3)].

The B—P distances to the *exo*-phosphine ligands on the cages of (1) and (3) are 1.919 (5) and 1.948 (8) Å, respectively. The remaining distances in the cation are within the normal range, as anticipated. The [SbF₆]⁻ anion has the expected octahedral geometry with a mean Sb—F bond length of 1.81 (4) Å.

Experimental

Compound (1) was obtained by the reaction in CH₂Cl₂ solution of *closo*-[3-Cl-3,8-(PPh₃)₂-3,1,2-PdAs₂B₉H₉] (McGrath, Spald-

ing, Fontaine, Kennedy & Thornton-Pett, 1991) with Ag[SbF₆], followed by the addition of a slight excess of 'BuNC in CH₂Cl₂. Pink crystals of *closo*-[3-('BuNC)-3,8-(PPh₃)₂-3,1,2-PdAs₂B₉H₈][SbF₆], (1), were obtained from a CH₂Cl₂ solution layered with heptane.

Mo $K\alpha$ radiation

Cell parameters from 25

 $0.31 \times 0.19 \times 0.12$ mm

4403 observed reflections

 $[I > 2\sigma(I)]$

 $\theta_{\rm max} = 25.90^{\circ}$

 $k = 0 \rightarrow 16$

 $h = -12 \rightarrow 11$

 $l = -18 \rightarrow 18$

3 standard reflections

frequency: 60 min

variation 1.0%

intensity decay: no decay,

 $\lambda = 0.7107 \text{ Å}$

reflections $\theta = 14.50 - 21.00^{\circ}$

 $\mu = 3.136 \text{ mm}^{-1}$

T = 291(1) K

Block

Pink

Crystal data

 $[Pd(C_{5}H_{9}N)(C_{8}H_{11}P) \{B_{9}H_{8}-As_{2}(C_{8}H_{11}P)\}][SbF_{6}]$ $M_{r} = 956.75$ Triclinic $P\overline{1}$ a = 9.9342 (8) Å b = 13.0495 (13) Å c = 15.3141 (14) Å $\alpha = 96.6120 (9)^{\circ}$ $\beta = 102.2910 (10)^{\circ}$ $\gamma = 105.039 (8)^{\circ}$ $V = 1842.5 (3) Å^{3}$ Z = 2 $D_{x} = 1.725 Mg m^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: nine ψ scans at 4° steps $T_{min} = 0.570, T_{max} =$ 0.703 7201 measured reflections

7201 independent reflections

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.728 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.0430	$\Delta \rho_{\rm min} = -1.101 {\rm e} {\rm \AA}^{-3}$
$wR(F^2) = 0.1071$	(0.95 Å from As2)
S = 1.216	Extinction correction: none
7201 reflections	Atomic scattering factors
401 parameters	from International Tables
$w = 1/[\sigma^2(F_o^2) + (0.0644P)^2]$	for Crystallography (1992
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = -0.003$	6.1.1.4)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

$U_{\rm iso}$ f	or C33A-	-C35A; L	$V_{eq} = (1$	$(3)\Sigma_i\Sigma_i$	Uija	ı¦* a	*a _i .a	i for	others.
-----------------	----------	----------	---------------	-----------------------	------	-------	--------------------	-------	---------

	x	y	Ζ	U_{eq}
Pd3	0.21639 (4)	0.80885 (3)	0.18640 (3)	0.05057 (14)
Sb	0.76973 (6)	0.72643 (4)	0.42038 (3)	0.0866 (2)
Asl	0.38647 (6)	0.76139 (6)	0.08680 (5)	0.0681 (2)
As2	0.35995 (8)	0.94647 (5)	0.11186 (4)	0.0685 (2)
P1	0.2783 (2)	0.9402 (2)	0.31649 (12)	0.0875 (7)
P2	-0.15502 (14)	0.70551 (11)	0.08108 (9)	0.0420(3)
N	0.1883 (6)	0.6222 (4)	0.2993 (3)	0.075 (2)
B4	0.1526 (6)	0.6791 (4)	0.0586 (4)	0.0418 (13)
B5	0.2322 (7)	0.7094 (5)	-0.0397 (5)	0.055 (2)
B6	0.3352 (8)	0.8502 (5)	-0.0237 (5)	0.059 (2)
B7	0.1206 (8)	0.9005 (5)	0.0817 (4)	0.054 (2)
B8	0.0298 (6)	0.7607 (4)	0.0572 (4)	0.0372 (12)
B9	0.0506 (7)	0.7024 (5)	-0.0448 (4)	0.0481 (15)

B10	0.1594 (8)	0.8042 (5)	-0.0904 (4)	0.058 (2)
B11	0.2084 (8)	0.9259 (5)	-0.0128 (5)	0.059 (2)
B12	0.0348 (8)	0.8320 (5)	-0.0329 (4)	0.055 (2)
Fl	0.6337 (7)	0.7240 (5)	0.3154 (4)	0.155 (2)
F2	0.8999 (7)	0.7211 (6)	0.5223 (4)	0.184 (3)
F3	0.7192(11)	0.5817 (5)	0.3916 (6)	0.255 (5)
F4	0.9111 (9)	0.7339 (8)	0.3577 (5)	0.202 (3)
F5	0.8297 (13)	0.8681 (6)	0.4437 (8)	0.294 (6)
F6	0.6434 (10)	0.7276 (13)	0.4858 (6)	0.319 (7)
C11	0.4567 (8)	1.0329 (6)	0.3326 (4)	0.074 (2)
C12	0.5709 (9)	0.9920 (7)	0.3326 (5)	0.090 (2)
C13	0.7067 (10)	1.0599 (11)	0.3432 (6)	0.124 (4)
C14	0.7266 (14)	1.1677 (12)	0.3524 (7)	0.145 (6)
C15	0.6176 (15)	1.2100 (9)	0.3511 (6)	0.133 (5)
C16	0.4807 (10)	1.1430 (6)	0.3421 (4)	0.097 (3)
C17	0.2895 (13)	0.8893 (8)	0.4217 (5)	0.179 (6)
C18	0.1534 (10)	1.0189 (9)	0.3189 (8)	0.175 (6)
C21	-0.2980 (5)	0.6588 (4)	-0.0216 (3)	0.0432 (12)
C22	-0.3564 (6)	0.7317 (5)	-0.0642 (4)	0.0585 (15)
C23	-0.4609 (7)	0.6980 (5)	-0.1452 (4)	0.065 (2)
C24	-0.5051 (7)	0.5896 (6)	-0.1859 (4)	0.072 (2)
C25	-0.4488 (7)	0.5180 (5)	-0.1437 (5)	0.072 (2)
C26	-0.3470 (6)	0.5506 (5)	-0.0628 (4)	0.062 (2)
C27	-0.1972 (6)	0.8075 (5)	0.1518 (4)	0.062 (2)
C28	-0.1579 (6)	0.5955 (5)	0.1402 (4)	0.068 (2)
C31	0.2014 (7)	0.6902 (6)	0.2600 (4)	0.072 (2)
C32	0.1760 (7)	0.5337 (5)	0.3518 (4)	0.076 (2)
C33†	0.2160 (12)	0.5844 (7)	0.4481 (5)	0.123 (5)
C34†	0.2688 (11)	0.4678 (9)	0.3294 (7)	0.134 (6)
C35†	0.0179 (8)	0.4657 (7)	0.3228 (6)	0.103 (4)
C33A‡	0.090 (3)	0.551 (3)	0.4175 (18)	0.107 (11)
C34A‡	0.3324 (15)	0.554 (3)	0.402 (2)	0.107 (11)
C35A‡	0.118 (3)	0.4232 (17)	0.296 (2)	0.107 (11)

† Occupancy = 0.795 (13). ‡ Occupancy = 0.205 (13).

Table 2. Selected geometric parameters (Å, °)

	•	-	
Pd3—As1	2.6434 (8)	As2B7	2.226 (7)
Pd3—As2	2.5296 (7)	As2—B11	2.105 (7)
Pd3—P1	2.330 (2)	P1-C11	1.816 (7)
Pd3-C31	2.011 (6)	P1-C17	1.805 (8)
Pd3—B4	2.291 (6)	P1-C18	1.808 (10)
Pd3—B7	2.300(7)	P2-C21	1.800 (5)
Pd3—B8	2.301 (5)	P2-C27	1.808 (6)
As1—As2	2,4919 (10)	P2-C28	1.780 (5)
As1—B4	2.215 (6)	P2B8	1.919 (5)
As1-B5	2.111 (7)	N-C31	1.124 (7)
As1-B6	2.204 (7)	N-C32	1.475 (7)
As2—B6	2.230 (7)		
C31—Pd3—B4	88.1 (2)	B5-As1-B4	51.4 (2)
C31—Pd3—B7	152.9 (2)	B6—As1—B4	87.8 (2)
B4—Pd3—B7	80.9 (2)	B5—As1—As2	95.2 (2)
C31-Pd3-B8	110.7 (2)	B6—As1—As2	56.3 (2)
B4—Pd3—B8	46.6 (2)	B4—As1—As2	94.49 (14)
B7—Pd3—B8	45.2 (2)	B5—As1—Pd3	98.0 (2)
C31—Pd3—P1	91.7 (2)	B6—As1—Pd3	99.3 (2)
B4Pd3P1	179.28 (14)	B4-As1-Pd3	55.4 (2)
B7-Pd3-P1	99.0 (2)	As2-As1-Pd3	58.93 (2)
B8—Pd3P1	133.0 (2)	B11—As2—B7	50.8 (2)
C31—Pd3—As2	151.1 (2)	B11—As2—B6	49.4 (3)
B4—Pd3—As2	91.64 (14)	B7—As2—B6	87.7 (2)
B7—Pd3—As2	54.6 (2)	B11—As2—As1	95.5 (2)
B8—Pd3—As2	89.42 (13)	B7—As2—As1	98.0 (2)
P1—Pd3—As2	88.86 (5)	B6—As2—As1	55.3 (2)
C31—Pd3—As1	100.8 (2)	B11-As2-Pd3	100.0 (2)
B4—Pd3—As1	52.76 (13)	B7—As2—Pd3	57.4 (2)
B7Pd3As1	92.0 (2)	B6—As2—Pd3	102.0 (2)
B8—Pd3—As1	88.96 (14)	As1—As2—Pd3	63.52 (2)
P1—Pd3—As1	127.95 (5)	C31—N—C32	178.2 (6)
As2—Pd3—As1	57.54 (2)	N-C31-Pd3	177.6 (6)
B5—As1—B6	49.7 (2)		

Molecule (1) crystallized in the triclinic system; space group $P\bar{1}$ was assumed and confirmed by the analysis. The methyl

groups of the *tert*-butyl moiety were disordered over two sites [occupancies 0.795 (13)/0.205 (13) from refinement]. The C atoms of the minor site were constrained to isotropic refinement; all other non-H atoms were refined anisotropically. H atoms were refined using a riding model (*SHELXL93*; Sheldrick, 1993). Examination of the structure with *PLATON* (Spek, 1994*a*) showed that there were no solvent accessible voids in the crystal lattice.

Data collection: CAD-4 Software (Enraf-Nonius, 1992). Cell refinement: Enraf-Nonius (1992) SET4 and CELDIM. Data reduction: DATRD2 in NRCVAX94 (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: NRCVAX94; SHELXL93 (Sheldrick, 1993). Molecular graphics: NRCVAX94; PLATON (Spek, 1994a); PLUTON (Spek, 1994b); ORTEPII (Johnson, 1976). Software used to prepare material for publication: NRCVAX94; SHELXL93.

GF thanks NSERC (Canada) for Grants in Aid of Research, JCP thanks EOLAS (Ireland) for financial support and TRS thanks Johnson Matthey PLC for the generous loan of palladium salts.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1248). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Carroll, W. E., Green, M., Stone, F. G. A. & Welch, A. J. (1975). J. Chem. Soc. Dalton Trans. pp. 2263–2270.
- Enraf-Nonius (1992). CAD-4/PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands
- Ferguson, G., Gallagher, J. F., McGrath, M., Sheehan, J. P., Spalding, T. R. & Kennedy, J. D. (1993). J. Chem. Soc. Dalton Trans. pp. 27-34.
- Ferguson, G., Gallagher, J. F., Sheehan, J. P., Spalding, T. R. Kennedy, J. D. & Maciás, R. (1993). J. Chem. Soc. Dalton Trans. pp. 3147– 3148.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Jasper, S. A., Roach, S. Jr, Stipp, J. N., Huffman, J. C. & Todd, L. J. (1993). Inorg. Chem. 32, 3072–3080.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- McGrath, M., Spalding, T. R., Fontaine, X. L. R., Kennedy, J. D. & Thornton-Pett, M. (1991). J. Chem. Soc. Dalton Trans. pp. 3223– 3233.
- Sheehan, J. P. (1992). PhD thesis, Univ. College Cork, Cork, Ireland.
- Sheehan, J. P., Spalding, T. R., Ferguson, G., Gallagher, J. F., Kaitner, B. & Kennedy, J. D. (1993). J. Chem. Soc. Dalton Trans. pp. 35–42.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Spek. A. L. (1994a). PLATON. Molecular Geometry Program. July 1994 version. Univ. of Utrecht, Utrecht, The Netherlands.
- Spek. A. L. (1994b). PLUTON. Molecular Graphics Program. July 1994 version. Univ. of Utrecht, Utrecht, The Netherlands.